高速铁路扣件状态不良动态响应诊断方法

Dynamic response diagnosis method for poor condition of high-speed railway fasteners

  • 摘要: 为解决传统高速铁路扣件状态诊断依赖于人工巡检的问题,提高扣件状态诊断的智能化,提出一种基于车辆动态响应数据,应用广义解调时频分析联合麻雀搜索算法优化支持向量机(sparrow search algorithm‑support vector machine,SSA‑SVM)的扣件状态诊断方法。利用安装在高速综合检测列车上的加速度传感器,采集扣件正常与失效区段的车辆振动响应信号,使用短时傅里叶变换与最大重叠离散小波包变换对信号数据进行预处理,获取频域信息与相位信息;利用广义解调时频分析方法分解信号,计算主要信息分量的有效值、能量贡献率和波长,作为扣件状态诊断的特征指标;联合SSA‑SVM模型训练特征指标,用于构建分类模型。结果表明:该方法对高速铁路扣件状态诊断的准确率达到97.50%,SSA‑SVM模型诊断效果优于其他方法,且使用多个评价指标验证其有效性和准确率能够满足实际应用的需求。

     

    Abstract: In order to improve the intelligence of fastener disease diagnosis, a fastener condition diagnosis method is proposed based on vehicle dynamic response data and generalized demodulation time-frequency analysis combined with sparrow search algorithm-support vector machine (SSA-SVM) model. The acceleration signals of the normal and abnormal sections of the fastener are collected, and the short-time Fourier transform and the maximum overlapping discrete wavelet packet transform are used to preprocess the signal data. The generalized demodulation time-frequency analysis method is used to decompose the signal, and the effective value, energy contribution rate and wavelength of the main information components are calculated as the characteristic index. The characteristic index is trained by the joint SSA-SVM model to construct the classification model. The results show that the accuracy of the method is 97.50%, and several evaluation indicators are used to verify that its effectiveness and accuracy can meet the actual needs.

     

/

返回文章
返回