结构振动信号盲源分离的快速复杂度追踪算法

Fast complexity pursuit algorithm for blind source separation of structural vibration signals

  • 摘要: 盲源分离(BSS)理论可用于分离出结构振动信号中的各阶模态坐标振动,而复杂度追踪(CP)是求解盲源分离问题的经典方法之一。为提高复杂度追踪算法的计算效率,本文进行了两方面改进:采用高斯分布的负对数函数这一非线性函数估计信号复杂度,并推导出可快速计算信号复杂度及其梯度的计算公式;采用基于子空间搜索的梯度下降算法,在降维后的子空间中计算最优解混向量。所推导公式在计算复杂度及其梯度时只需采用混合信号的协方差矩阵和时延协方差矩阵,而无需使用全部信号数据。利用数值算例和框架振动数据对所提方法进行研究,结果表明,快速复杂度追踪算法在计算效率方面高于传统方法,并且能正确地分离出结构模态坐标振动。

     

    Abstract: Blind source separation (BSS) can be used to extract modal coordinate vibrations from structural vibration signals. Complexity pursuit (CP) is one of the classical methods for solving the BSS problem. To improve the computational efficiency of the CP algorithm, this paper proposes two enhancements: it uses the negative log function of a Gaussian distribution as a nonlinear function to estimate signal complexity and derives formulas for rapidly computing signal complexity and its gradient; it employs a subspace search-based gradient descent algorithm to calculate the optimal mixing vector in the reduced subspace. The new formulas only require the covariance matrix of mixed signals and the covariance matrix of time delays when computing complexity and its gradient, without using all signal data. Numerical examples and structural vibration data are employed to evaluate the proposed method. The results demonstrate that the fast complexity pursuit algorithm outperforms traditional methods in terms of computational efficiency and accurately separates structural modal coordinate vibrations.

     

/

返回文章
返回