基于鲁棒代价敏感支持矩阵机的风电齿轮箱故障诊断方法

Robust cost-sensitive support matrix machine for wind turbine gearbox fault diagnosis

  • 摘要: 支持矩阵机作为一种先进的矩阵学习模型,可充分利用矩阵数据内蕴的结构信息,但其易受噪声和野值点影响,且在不平衡数据集下泛化性不足。为此,提出一种鲁棒代价敏感支持矩阵机(robust cost-sensitive support matrix machine,RCSSMM)模型,并将其应用于风电齿轮箱智能故障诊断。RCSSMM采用集成矩阵度量评估矩阵输入的先验分布,为不同的样本分配不同的样本权重,以提高模型对噪声和野值点的鲁棒性。同时,RCSSMM引入代价敏感损失函数,为不同类别的矩阵数据赋予不同的惩罚因子,并通过哈里斯鹰优化(Harris hawks optimization,HHO)算法自适应地确定惩罚因子的最优取值,使模型更加聚焦少数类样本,以提高对不平衡数据的诊断性能。利用风电齿轮箱模拟实验数据和工程实测数据对所提方法进行验证,实验结果表明:在噪声、野值点和数据不平衡干扰下,RCSSMM模型具有更优异的故障诊断性能。

     

    Abstract: Support matrix machine is an advanced matrix learning model that can fully utilize the intrinsic structural information in matrix data. However, it is susceptible to noise and outliers, and lacks generalization ability in imbalanced data. To this end, a robust cost-sensitive support matrix machine (RCSSMM) model is proposed and applied to intelligent diagnosis of wind turbine gearbox faults. RCSSMM improves the robustness to noise and outliers by evaluating the prior distribution of the matrix input with assembled matrix distance, and assigning different sample weights to different samples. Additionally, RCSSMM introduces the cost-sensitive loss function that assigns different penalty factors to different categories of matrix data. The optimal values of the penalty factors are adaptively determined with the Harris hawk optimization algorithm to focus on minority class samples and improve the diagnostic performance on imbalanced data. The proposed method is validated using simulated experimental data and real measured data of wind turbine gearboxes. The experimental results demonstrate that the RCSSMM model exhibits more outstanding fault diagnosis performance even under the presence of noise, outliers, and imbalanced data.

     

/

返回文章
返回