基于状态/参数交替优化估计的齿轮时变啮合刚度 辨识方法研究

Time-varying mesh stiffness identification of gear systems based on an alternating state/parameter optimization estimation

  • 摘要: 齿轮副啮合刚度是齿轮传动动力学模型中的重要参数,啮合刚度识别对于齿轮传动系统振动与噪声的分析 以及状态监测具有重要意义。由于齿轮传动系统的时变啮合刚度很难用直接测量的方法得到,因此有必要发展基 于数据驱动的齿轮时变啮合刚度辨识方法。为了解决该难题,本文提出了一种系统状态和模型参数交替优化方法 以辨识齿轮传动系统时变啮合刚度。该方法以齿轮啮合频率为基频构造傅里叶基函数库表征齿轮时变啮合刚度, 并进一步提出了一种基于再生核希尔伯特空间的降噪方法来估计系统状态和模型参数。系统状态变量与时变啮合 刚度在动力学模型与数据双重约束下进行交替迭代优化,实现对齿轮传动系统时变啮合刚度的辨识。齿轮传动动 力学仿真和齿轮传动系统实验结果验证了所提齿轮时变啮合刚度辨识方法的有效性。

     

    Abstract: The time-varying mesh stiffness is a core parameter of gear systems, and the mesh stiffness identification is of great sig? nificance for the dynamic analysis and condition monitoring of gear transmission systems. Since it is difficult to directly measure the mesh stiffness, it is necessary to develop a data-driven time-varying mesh stiffness identification method. To deal with this prob? lem, an alternating state-parameter optimization method is proposed to identify the time-varying mesh stiffness of gear systems. The Fourier series with the fundamental frequency of the mesh frequency is constructed to characterize the mesh stiffness. Further? more, a Reproducing Kernel Hilbert Space (RKHS)-based de-noise method is further proposed to estimate the system state and parameter. The system state and stiffness parameter are alternately optimized with the joint constrains of dynamic model and data to realize the time-varying mesh stiffness identification of gear transmission systems. The simulation and experimental studies vali? date the effectiveness of the new mesh stiffness identification method for gear systems.

     

/

返回文章
返回