动态模态分解的结构模态参数自动辨识

Automated structural modal parameter identification method based on dynamic mode decomposition

  • 摘要: 结构模态参数的自动化辨识是当前结构动力学领域的研究热点,然而传统的时域辨识方法在大量响应数据下存在效率低的问题。结合动态模态分解(dynamic mode decomposition, DMD)技术和密度聚类(density-based spatial clustering of applications with noise,DBSCAN)算法,利用结构自由衰减响应,提出了一种快速结构模态参数自动辨识方法。根据真实模态参数在DMD技术中的秩稳定性,提出了结构模态的自动辨识策略,即通过判断轮廓系数(Sil)和候选真实模态簇数量反映聚类得到簇的模态成分,利用其变化特点自动地确定DBSCAN的关键超参数,实现准确地辨识结构模态参数。以简支梁模型为例,与有限元方法(finite element method, FEM)结果对比,说明了模态参数自动辨识的准确性。以非均质悬臂板模型为例,与特征系统实现算法(eigen realization algorithm, ERA)对比,本文方法避免了Hankel矩阵选择问题,展示了在大量数据条件下快速辨识结构模态参数的能力。以机翼实物模型为例,通过非接触式的动作捕捉系统采集结构位移响应进行模态参数自动辨识,与LMS. Test Lab模态测试系统结果对比,验证在实际场景中应用的有效性;并通过该机翼的实物模型和有限元模型分析了抗噪性,结果表明在10%的噪声干扰下能够准确地辨识出结构模态参数。

     

    Abstract: Automated identification of structural modal parameters is an important area of structural dynamics. Traditional time-domain identification methods have the problem of inefficiency when dealing with large amounts of response data. This study integrates the Dynamic Mode Decomposition (DMD) technique and the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, and proposes a rapid automatic identification method for structural modal parameters based on structural free decay response. The automatic identification strategy for structural modes is proposed based on the rank stability of physical modal parameters in DMD. By evaluating the silhouette coefficient (Sil) and the number of candidate physical mode clusters, the key hyperparameters of DBSCAN is automatically determined by observing significant changes in the silhouette coefficient, leading to the accurate identification of structural modal parameters. The accuracy of this method is demonstrated by comparing with Finite Element Method (FEM) using a simply supported beam model. Additionally, the capability to quickly identify modal parameters in large datasets is illustrated by comparing to the Eigen Realization Algorithm (ERA) on an inhomogeneous cantilever plate model. Finally, the practical application is validated by using a physical wing model, where structural responses are measured by a non-contact motion capture system. Our modal identification results agree well with those from the LMS. Test Lab modal testing system. The noise resistance of this method is demonstrated on the physical and FEM model of the wing under 10% noise conditions.

     

/

返回文章
返回