飞机复杂运动机构故障诊断方法体系结构研究

Architectural design of fault diagnosis methods for aircraft complex motion mechanisms

  • 摘要: 针对当前飞机复杂运动机构的故障诊断研究多侧重于系统功能失效分析,对机构运动特征与实际故障之间关联机制解析不足的问题,开展了复杂运动机构故障诊断方法研究。提出一种数据生成、特征处理以及数据分析三层展开的故障诊断分析体系。从复杂运动机构的运动规律和性能出发,确定典型故障工况的参数映射关系,基于动力学模型引入故障参数体系实现典型故障工况时序信号样本集的生成;使用二维图像转换方法对一维时序信号进行映射,建立特征级融合的多维张量;依托深度学习算法实现复杂运动机构的故障精准诊断。以建立的方法体系为基础设计基于格拉姆角场和马尔可夫变迁场方法的协同特征转换,以及引入通道、空间注意力机制的残差网络故障诊断模型。以起落架下位撑杆锁机构为例完成试验验证,仿真试验结果表明,所提出的方法在95%置信度下的准确率不低于0.9566,验证了方法在飞机复杂运动机构故障诊断应用方面的可行性;消融试验结果表明,所提方法表现最优,验证了方法设计的有效性。

     

    Abstract: Current research on fault diagnosis for aircraft complex motion mechanisms primarily focuses on system functional failure analysis, neglecting a comprehensive understanding of the correlation between motion characteristics and actual faults. This study investigates fault diagnosis methods for complex motion mechanisms and proposes a three-tiered framework encompassing data generation, feature processing and data analysis to address this limitation. The framework utilizes dynamic modeling and a fault parameter system to generate a dataset of time-series signals representing typical fault conditions. One-dimensional time-series data are mapped using two-dimensional image conversion methods, constructing multidimensional tensors through feature-level fusion based on sensor types and feature extraction methods of the complex motion mechanisms. A deep learning-based fault diagnosis model is employed for precise fault identification of complex motion mechanisms. This framework further incorporates collaborative feature transformations using Gramian angular fields and Markov transition fields, as well as residual network models with channel and spatial attention mechanisms. Experimental validation using a landing gear lower strut lock mechanism demonstrates high accuracy, exceeding 0.9566 at a 95% confidence level, thus validating the feasibility of this approach for fault diagnosis in aircraft complex motion mechanisms. Ablation experiments confirm the effectiveness of each component, highlighting the overall superiority of the proposed framework.

     

/

返回文章
返回