谱集成稀疏识别模型驱动的超鲁棒智能诊断方法

A spectral ensemble sparse representation classification model-driven super-robust intelligent diagnostic method

  • 摘要: 在工业大数据与智能制造背景下,数据驱动的智能故障诊断技术已被视为保障高端装备安全可靠服役、实现装备健康管理与智能运维的关键赋能技术。针对现有智能故障诊断模型无法兼顾诊断精度优越性、强抗噪鲁棒性、高效计算效率与强超参数稳健性的问题,提出一种谱集成稀疏识别模型驱动的超鲁棒智能诊断方法。所提方法设计了基于级联分割算子的振动数据增强策略,以提升振动数据样本的数量与质量;利用振动信号的频谱特征实现字典原子设计,并构建了考虑谱特征融合的谱集成字典设计策略,提升谱稀疏表示字典的重构功能;构建了基于谱稀疏近似误差最小准则的智能识别策略,实现测试样本健康状态的智能诊断。运用所提方法在行星齿轮传动系统故障数据集上开展了试验验证,结果表明,所提智能诊断方法可以实现优越的诊断精度、强抗噪鲁棒性、高效计算效率以及强超参数选择稳健性的优势集成,诊断结果优于现有方法,在数据驱动的工业设备智能故障诊断方面展现出重要应用前景。

     

    Abstract: Under the background of industrial big data and intelligent manufacturing, data-driven intelligent fault diagnosis technology has become a crucial enabling technology. It ensures the safe and reliable operation of high-end equipment, facilitates equipment health management, and supports intelligent operation and maintenance. Existing intelligent fault diagnosis models often fail to simultaneously achieve superior diagnostic accuracy, strong noise immunity, high computational efficiency, and robust hyperparameter performance. To address these limitations, this paper proposes a novel spectral ensemble sparse representation classification model-driven super-robust intelligent diagnostic method. The proposed method designs a vibration data augmentation strategy based on cascade segmentation operators, aiming to enhance both the quantity and quality of vibration data samples. It utilizes the spectral features of vibration signals for dictionary atom design and constructs a spectral ensemble dictionary design strategy that incorporates spectral feature fusion. This improves the reconstruction capability of the spectral sparse representation dictionary. The method develops an intelligent recognition strategy based on the spectral sparse approximation error minimization criterion to achieve intelligent diagnosis of test samples health status. The proposed method is validated on a planetary gear transmission fault dataset. Results demonstrate that the intelligent diagnosis method can integrate the advantages of superior diagnostic accuracy, strong noise immunity, high computational efficiency, and robust hyperparameter selection. Its diagnosis results surpass existing advanced methods, showcasing significant application for data-driven intelligent fault diagnosis of industrial equipment.

     

/

返回文章
返回