大语言模型在跨座式单轨列车齿轮箱振动信号预测中的应用

Application of large language models in the gearbox vibration signals prediction of straddle monorail train

  • 摘要: 跨座式单轨列车齿轮箱振动信号是监控列车运行状态的关键指标,振动信号的准确预测对于早期故障检测至关重要。鉴于大规模语言模型在模式识别和时间序列数据分析中的优势,本文提出了一种融合大规模语言模型(LLM)与时序数据处理技术的跨座式单轨列车齿轮箱振动信号预测方法,构建了基于 DCBiformerNet 与 VSP-LLM 架构的集成方案。该方案包含以下三个核心步骤:(1) 提出 DCBiformerNet 模型,通过融合 GRU、因果卷积和多头注意力机制,增强时序特征提取能力,提高振动信号趋势预测准确性;(2) 设计特定任务和通用任务的提示模板,结合多模态数据作为大规模语言模型的输入,显著提升推理效果;(3) 将DCBiformerNet 与 VSP-LLM 框架结合,改进预测输出层,实现高精度振动信号预测。实验结果表明,该方法在预测精度和稳定性方面显著优于传统模型(如 Autoformer、Informer、DLinear 等),验证了其高效性能。

     

    Abstract: The scheme consists of three core steps: (1) the DCBiformerNet model is presented, which enhances the time-series feature extraction capability and improves the vibration signal trend prediction accuracy by integrating GRU, causal convolution, and multi-head attention mechanism; (2) prompt templates for specific and general tasks are designed. Multimodal data is combined and used as input for LLMs, which greatly improves the inference results; (3) DCBiformerNet is combined with the VSP - LLM framework and the prediction output layer is improved to fulfill high - precision vibration signal prediction. The experimental results show that this method surpasses traditional models (e.g., Autoformer, Informer, DLinear, etc.) in prediction accuracy and stability, confirming its high performance.

     

/

返回文章
返回