信号-图像映射编码支持的水电机组智能故障诊断方法研究

Intelligent fault diagnosis method for hydroelectric generating units supported by signal-image mapping encoding

  • 摘要: 故障诊断是保障水电机组安全高效运行的重要手段,近年来,数据驱动的水电机组故障诊断方法受到广泛关注,但传统的数据驱动方法通常依赖人为特征提取与选择,在一定程度上限制了诊断效果。因此,本文提出了一种基于信号-图像映射编码与深度卷积神经网络的水电机组故障诊断方法。通过编码方法将水电机组一维振动信号转化为二维图像数据。将得到的二维图像输入到深度卷积神经网络中,自适应提取机组故障特征并训练诊断模型,避免了传统诊断方法人为特征选择的主观性。在三个数据集上,对比分析了不同映射方法、去噪方法以及网络框架对诊断效果的影响,结果表明提出的模型在特征学习能力、故障识别准确率及噪声适应性等方面优于传统方法,对水电机组的故障诊断研究具有重要的理论意义与实践价值。

     

    Abstract: Fault diagnosis is essential for ensuring the safe and efficient operation of hydroelectric generating units. In recent years, data-driven diagnosis methods have gained wide attention, but traditional approaches often rely on manual feature extraction and selection, which limits their performance. This paper proposes a fault diagnosis method based on signal-image mapping encoding and deep convolutional neural networks (DCNN). One-dimensional vibration signals are first converted into two-dimensional images, which are then input into a DCNN to automatically extract fault features and train the diagnosis model, avoiding the subjectivity of manual feature selection. Experiments on three datasets compare different mapping methods, denoising strategies, and network architectures. Results show that the proposed method outperforms traditional approaches in feature learning, fault identification accuracy, and noise robustness, demonstrating its theoretical and practical value.

     

/

返回文章
返回