大跨柔性光伏阵列风致位移响应时程预测模型

Prediction model for wind-induced displacement time-history responses of long-span flexible photovoltaic arrays

  • 摘要: 随着大跨柔性光伏阵列朝着更多排和更多跨趋势发展,当前获取阵列风致位移响应的风洞试验方法成本会进一步增加且周期更长,需要更多的监测点以测量大跨柔性光伏阵列的位移响应。为解决风洞试验和现场实测位移响应测量中需要布置多个测点以及数据间歇性缺失问题,本文采用双向长短期记忆(BiLSTM)网络和时间卷积网络(TCN)两种深度学习模型,针对五排三跨柔性光伏阵列的多测点响应时程预测开展研究,通过输入前10 s位移响应时程数据实现后10 s时程数据的准确预测,验证了深度学习方法在大跨柔性光伏阵列风致响应预测中的适用性。研究表明:BiLSTM和TCN两种模型均展现出良好的泛化性能,其中TCN模型具有更高的训练效率,而BiLSTM模型则在测试阶段表现更优,其均方根误差(RMSE)和平均绝对百分比误差(MAPE)等评价指标均优于TCN模型。本研究通过两种主流的时序预测模型,实现了大跨柔性光伏阵列风致位移响应时程预测,为将来更多排更多跨的柔性光伏阵列风振响应预测提供了新的技术途径。

     

    Abstract: With the development of long-span flexible photovoltaic (PV) arrays towards configurations featuring increased rows and spans, conventional wind tunnel testing methods for acquiring wind-induced displacement responses face substantially higher costs, extended durations, and greater demands for monitoring points. To overcome the challenges of deploying extensive measurement points and intermittent data gaps in both wind tunnel experiments and field measurements, this study employs two deep learning models—Bidirectional Long Short-Term Memory (BiLSTM) and Temporal Convolutional Network (TCN)—to investigate multi-point response time-history prediction for a five-row, three-span flexible PV array. By utilizing the displacement response time-history data from the preceding 10 seconds, the models achieve accurate prediction of the subsequent 10-second time-history data, demonstrating the applicability of deep learning in forecasting wind-induced responses of long-span flexible PV arrays. The research reveals that both BiLSTM and TCN models exhibit strong generalization performance; specifically, the TCN model demonstrates higher training efficiency, while the BiLSTM model delivers superior testing-phase performance with better evaluation metrics including Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). This work establishes a framework for predicting wind-induced displacement time-history responses using mainstream time-series models, providing a novel technical pathway for future vibration response prediction in flexible PV arrays with expanded row-span configurations.

     

/

返回文章
返回