基于支持向量机回归模型超参数优化的坐姿人体水平前后向振动特性研究

Modelling of the fore-and-aft in-line seat transmissibility using the support vector regression with hyperparameter optimization algorithms

  • 摘要: 构建能够准确预测坐姿人体的振动传递特性模型对于研究驾乘舒适性具有重要意义。相较于传统动力学模型,机器学习模型的泛化能力更强,其中支持向量机回归模型已在处理多维和小样本数据中展现出优势,但其预测性能依赖于超参数设置。本文基于水平前后向激励下的坐姿人体振动实验,采用多种体征参数、不同座椅条件、激励特征变化等作为输入特征,结合三种优化算法(网格搜索算法、粒子群算法、黄金正弦算法),探究支持向量机回归模型对传递函数的预测性能。结果显示,地板到坐垫和靠背处水平前后向同轴传递函数的共振频率均随水平前后向激励幅值的增大而降低。与网格搜索算法相比,经粒子群算法优化后的超参数集可将模型的决定系数R2提高至0.93;通过黄金正弦算法优化后的支持向量机回归模型对靠背和坐垫处传递函数的决定系数R2可进一步提高,分别达到0.965和0.964。相较于网格搜索和粒子群优化算法,基于黄金正弦算法优化后的支持向量机回归模型可以更准确地预测传递函数。

     

    Abstract: Developing accurate models to predict the vibration transmission to the seated human body is essential for studying the riding discomfort. Support Vector Regression (SVR) offers better generalization than traditional dynamic models while investigating the high-dimensional, small-sample data, although its performance depends on the hyperparameter tuning. In this study, anthropometric parameters, seat conditions and the fore-and-aft excitation amplitudes were set as input features to evaluate SVR models for predicting the seat transmissibility. Three optimization algorithms, namely Grid Search (GS), Particle Swarm Optimization (PSO), and Golden Sine Algorithm (Gold-SA), were utilized for the hyperparameter tuning of the SVR model. Results show that resonant frequencies of the fore-and-aft horizontal seat transmissibility to both the seat cushion and the backrest decreases with the increase of the horizontal excitation. Compared to the GS-SVR, the PSO-SVR improved the model’s R2 value to 0.93. Furthermore, the Gold-SA-SVR achieved even higher R2 values of 0.965 and 0.964 for the transmissibility to the backrest and cushion, respectively.

     

/

返回文章
返回