锚索肋板式拦石墙结构稳定性及动力响应研究

Structural stability and dynamic response of anchor cable ribbed rockfall embankments

  • 摘要: 为了满足站场扩线落石防护范围需求,在既有棚洞防护措施基础上,提出了棚洞?拦石墙组合结构。该结构底部为既有棚洞或新建门式基础,上部为锚索肋板式拦石墙。根据受力分析,计算了棚洞?拦石墙组合结构稳定安全系数,并通过 ANSYS/LS?DYNA 软件对落石冲击该组合结构的动力响应进行了研究。结果表明:棚洞?拦石墙组合结构稳定安全系数较高,能够满足抗滑动和抗倾覆稳定性要求;落石冲击拦石墙面板后,受重力作用,会回弹继续冲击棚洞或新建门式基础顶板缓冲层;该组合结构能够抵抗落石对拦石墙的冲击作用,增加站场扩线防护范围。

     

    Abstract: In order to meet the demand for rockfall protection range of station yard expansion, on the basis of the existing rock shed protection measures, a new combination structure of rock shed and rockfall embankments is proposed. The bottom of the structure is the existing rock shed or the new portal foundation, and the upper part is the anchor cable ribbed wall. According to the force analysis, the calculation formula of stability safety coefficient of the new combination structure of rock shed and rockfall embankments is established. The dynamic response of the rockfall impacting the new combination structure is studied by ANSYS/LS-DYNA software. The results show that the new combination structure of rock shed and rockfall embankments has a high stability safety coefficient and can meet the requirements of anti-sliding and overturning stability. After the impact of falling rocks on the rockfall embankments panel, it will rebound and continue to impact the buffer layer of the top plate of the rock shed or the new portal foundation due to gravity. The combination structure can resist the impact of falling rocks on the rockfall embankments and increase the protection range of the station expansion line. It can provide effective reference significance for other similar projects.

     

/

返回文章
返回