三维自由空间中指向性信息未知偶极声源的等效源识别方法

The equivalent source method for identifying dipoles with unknown directivity in three-dimensional free space

  • 摘要: 偶极声源的指向性是影响声源识别结果的关键因素。目前,偶极声源的识别方法通常是基于声源的指向性信息先验假设,然而在实际偶极声源识别中,很难事先获得声源的指向性信息;此外,声源分布在二维平面上的假设通常不适用于实际的气动系统。为了准确识别指向性信息未知的偶极声源,并获得声源的三维成像结果,提出了一种基于加权迭代 L1最小化算法的等效源方法。该方法将声源指向矢量作为未知参数,从测量声压与等效源源强的传递函数中分离出来,并通过加权迭代 L1 最小化算法将声源指向矢量与等效源源强一起求解出来,进而利用这些求解获得的声源信息进一步预测声场。与以往的偶极声源识别方法不同,该方法可以实现指向性信息未知偶极声源的三维成像。指向性信息未知偶极声源的三组仿真案例和自制类偶极声源的实验研究验证了该方法的有效性和鲁棒性。

     

    Abstract: The source directivity is a crucial factor affecting the dipole source identification. At present, the identification methods of dipole sources are usually based on the prior directivity assumption. However, it is difficult to accurately obtain the directivity information of a dipole source in advance. Moreover, the assumption that sources are usually located on a single surface at a certain distance from the microphone array may be not suitable for the actual aeroacoustic system. In order to accurately identify the dipole source under the condition that the directivity of the source is unknown, the equivalent source method based on the reweighted iterative L1 minimization algorithm is proposed in this paper. In this method, the source directivity vector is treated as an unknown quantity and separated from the transfer function relating the measured pressures to the equivalent source strengths, which is solved together with the equivalent source strengths via the weighted iterative L1 minimization algorithm. Then the sound field can be predicted in term of the solved source information. Different from the previous dipole source identification methods, the proposed method can realize three-dimensional volumetric imaging for the dipole sources with unknown directivity. Numerical simulations with three cases of dipole sources with unknown directivities and experiments with the dipole-like sources examine the validity and robustness of the proposed method.

     

/

返回文章
返回