深度嵌入度量学习的机械跨工况故障识别方法

Deep embedding metric learning for machinery fault identification across different working conditions

  • 摘要: 传统数据驱动的机械装备故障诊断方法依赖目标工况下的完备数据,而装备实际运行工况复杂多变,难以预测,且数据获取困难。针对上述问题,提出了一种深度嵌入度量网络(Deep Embedding Metric Network, DEMN)的机械跨工况故障识别方法,该方法利用装备在已知工况下的数据学习鲁棒特征表示,建立适用于未知工况场景下的泛化智能故障识别模型。基于多尺度卷积神经网络(Multiscale Convolutional Neural Network, MCNN)获取故障信号的深度嵌入特征;用度量学习方法引导判别性特征学习,构建特征嵌入空间下的三元组损失(Triplet Loss, TL);利用粒子群算法(Particle Swarm Optimization, PSO)对间隔参数进行寻优。所提方法有效缩小装备健康状态类内距离、扩大类间距离,降低工况变化对健康状态映射关系的影响。实验结果表明,该方法在齿轮箱跨工况故障诊断实验中表现出良好的识别精度与泛化性能。

     

    Abstract: The complete training data under target working conditions are necessary for the traditional data-driven fault diagnosis methods of machinery. However, the actual working conditions of mechanical equipment are complicated and difficult to predict,and thus it is difficult to obtain sufficient training data. To solve this problem,this paper proposed a deep embedding metric net?work(DEMN)for mechanical fault identification across different working conditions. The proposed method uses the data underknown working conditions to learn robust feature representation, and then establish the generalized fault diagnosis model for the unseen working conditions. First, the deep embedding features of fault signal are extracted by the multiscale convolutional neural network(MCNN). Then, the triplet loss-based metric learning objective is optimized to enhance the discriminant ability of classification boundary. Particle swarm optimization(PSO)algorithm is executed to the search the optimal margin in triplet loss. By facilitating the intra-class compactness and the inter-class separability, the influence of working condition changes to fault relationship mapping is significantly reduced. The experimental results show that the proposed method presents superior accuracy and generalization performance in gearbox fault diagnosis across different working conditions.

     

/

返回文章
返回