改进 VMD 算法在颤振试验信号模态参数辨识中的应用

Modal parameter identification based on optimized variational mode decomposition and its application in signal processing of flutter test

  • 摘要: 提出了一种基于改进变分模态分解(Variational Mode Decomposition,VMD)的模态参数辨识算法,用于颤振试验信号的数据处理。采用自然激励技术提取脉冲响应信号;利用信号的先验信息结合本文提出的适应度函数,求解最优分解参数;用参数优化后的 VMD 算法将信号分解为指定个数的信号分量,每个分量仅含单一频率的振动模态;用矩阵束法识别模态参数。数值仿真和风洞试验研究表明:改进的 VMD 算法可以有效分离颤振试验信号中的密集模态,提高模态参数辨识的精度;结合颤振裕度法,有助于颤振边界的预测。

     

    Abstract: A modal parameter identification method applicable to flutter test data is proposed based on optimized variational mode decomposition(VMD). Firstly,the natural excitation technique(NExT)is employed to extract impulse response signal from the test data. Then,the decomposition parameters are optimized by using the prior information of the test data combined with the proposed new fitness function. Finally,the target signal is decomposed into multiple monocomponents that each contains an independent oscillation mode. The matrix pencil method is adopted to identify the modal parameters. Numerical simulations and the wind tunnel flutter test demonstrate the effectiveness of the proposed algorism in separating close modes of flutter test data. While associated with the flutter margin method,the optimized VMD can help provide an accurate flutter boundary prediction.

     

/

返回文章
返回