一种结合改进 Inception V2 模块和 CBAM 的轴承故障诊断方法

A bearing fault diagnosis method combining improved inception V2 module and CBAM

  • 摘要: 传统深度学习的轴承故障诊断方法网络复杂,训练参数多,模型泛化性弱。针对上述问题,在工业大数据背景下,提出一种结合改进 Inception V2 模块和 CBAM 注意力机制的轴承故障诊断方法,改进后的 Inception V2 模块通过增加平均池化层,进一步拓宽分支网络结构,从而提高网络表达能力。将轴承振动信号通过小波变换转换为时频图,作为卷积神经网络的输入,通过改进 Inception V2 模块对输入特征进行自适应特征提取,跨通道对提取的特征进行信息组织;通过 CBAM 注意力机制生成通道和空间的双重注意力权重,增强相关度高的特征并抑制相关度不高的特征;将生成的特征数据输入到全局平均池化层,并输出故障诊断结果。实验结果表明:该方法可以建立“浅层”卷积神经网络模型,减少模型参数,加快模型收敛速度,实现 99.75% 的准确率;同时在不同负载以及高噪声条件下,模型有较好的泛化性,更适合应用在工业大数据中。

     

    Abstract: The traditional deep learning bearing fault diagnosis method has a complex network,many training parameters,andweak model generalization. In response to the above problems,under the background of industrial big data,a bearing fault diagnosis method combining the improved Inception V2 module and the CBAM attention mechanism is proposed. The improved Inception V2 module further broadens the branch network structure by adding the average pooling layer,thereby improves network expression ability. The bearing vibration signal is converted into a time-frequency image through wavelet transform,which is used as the input of the convolutional neural network. The features of the input are adaptively extracted through the improved Inception V2 module,and the extracted features are organized across channels. Through CBAM attention mechanism,dual attention weights of channel and space are generated,enhancing the features with high correlation and suppressing the features with low correlation.The generated feature data is input to the global average pooling layer and the fault diagnosis result is outputted. Experimental results show that this method can establish a "shallow" convolutional neural network model,reduce model parameters,speed up model convergence,and achieve an accuracy of 99.75%. At the same time,under different loads and high noise conditions,the model has good generalization. It is more suitable for application in industrial big data.

     

/

返回文章
返回