基于 MVMD‑SSI 和 Single‑Pass 聚类的高层结构 动力特性自动跟踪

Automatic tracking of dynamic characteristics of high‑rise structures based on MVMD‑SSI and Single‑Pass clustering method

  • 摘要: 随机子空间辨识算法(SSI)在识别高层结构动力特性过程中产生虚假模态,干扰了动力特性的自动跟踪。本 文通过状态空间模型证明非白噪声是产生虚假模态的原因之一,并进一步针对非白噪声激励提出了基于多元变分 模态分解(MVMD)的信号重构方法,剔除由于非白噪声引起的虚假模态;通过 Single?Pass 聚类算法剔除离散虚假 极点,消除其他虚假模态。将上述算法应用于超高层结构的现场实测数据,实现了动力特性的长期自动识别与 跟踪。

     

    Abstract: Stochastic subspace identification (SSI) generates spurious modes in the process of identifying the dynamic characteris? tics of high?rise structures, which interferes with the automatic tracking of dynamic characteristics. This article has proved that the non?white noise excitation is one of the causes of spurious modes, and further proposed a signal reconstruction method based on multivariate variational mode decomposition (MVMD) for non?white noise excitation, which removes the influence of non?white noise excitation in signals and eliminates spurious modes. A Single?Pass clustering algorithm is proposed to eliminate discrete spuri? ous poles. The above algorithm has been applied to on?site monitoring data of super high?rise structures, achieving long?term auto? matic identification and tracking of dynamic characteristics.

     

/

返回文章
返回